Robust Question Answering via Sub-part Alignment

Jifan Chen and Greg Durrett
The University of Texas at Austin
QA models are easy to fool

- Current QA models work well in-domain, but they're not broadly robust when facing challenge settings
QA models are easy to fool

- Current QA models work well in-domain, but they're not broadly robust when facing challenge settings.

A simple adversarial attack could fool the model:

Question: What day was Super Bowl 50 played on?

Context: Super Bowl 50 was an American football game to determine the champion of NFL ... The game was played on **February 7, 2016** ...
QA models are easy to fool

- Current QA models work well in-domain, but they're not broadly robust when facing challenge settings.

A simple adversarial attack could fool the model:

Question: What day was Super Bowl 50 played on?

Context: Super Bowl 50 was an American football game to determine the champion of NFL ... The game was played on **February 7, 2016** ...

Adversarial Context: The Champ Bowl was played on the day of **August 18, 1991**

Adversarial attack by Jia and Liang 2017
QA models are easy to fool

- Current QA models work well in-domain, but they're not broadly robust when facing challenge settings.

A simple adversarial attack could fool the model:

Question: What day was Super Bowl 50 played on?

Context: Super Bowl 50 was an American football game to determine the champion of NFL ... The game was played on **February 7, 2016** ...

Adversarial Context: The Champ Bowl was played on the day of **August 18, 1991**

- It is hard to understand and control the behaviors of such black-box models.

Adversarial attack by Jia and Liang 2017
Make QA explicit
Make QA explicit

Core idea: Verify if the whole question is answered: break the question into smaller units and find their counterparts in the context

- If all units are well-supported, we can trust the prediction
- If not, we can reject the prediction or place constraints to control the model
Make QA explicit

Core idea: Verify if the whole question is answered: break the question into smaller units and find their counterparts in the context

- If all units are well-supported, we can trust the prediction
- If not, we can reject the prediction or place constraints to control the model

Adversarial Context: Super Bowl 50 was an American football game to determine the champion NFL ... The game was played on February 7, 2016 ... The Champ Bowl was played on the day of August 18, 1991

Question: What day was Super Bowl 50 played on?
Sub-part alignment for QA

Context: Super Bowl 50 was ... The game was played on Feb 7, 2016

Question: What day was Super Bowl 50 played on?
Question: What day was Super Bowl 50 played on?

Context: Super Bowl 50 was ... The game was played on Feb 7, 2016

Build structured graph with coreference and semantic role labeling
Super Bowl 50 was played on Feb 7, 2016.

```
Context: Super Bowl 50 was ... The game was played on Feb 7, 2016
```

- Build structured graph with *coreference* and *semantic role labeling*
- Model the alignment between the question graph and the context graph

Question: What day was Super Bowl 50 played on?
Outline

1) Question answering via sub-part alignment
 ▪ Graph construction
 ▪ Model: graph alignment between the question and the context
 ▪ Inference: beam search respecting constraints
 ▪ Training: SSVM using beam search

2) Experiments
 ▪ Adversarial robustness
 ▪ Constraints on alignment scores

3) Takeaways
Question: What day was Super Bowl 50 played on?
Question: What day was Super Bowl 50 played on?

Context: Super Bowl 50 was an American football game to determine the champion NFL ... The game was played on February 7, 2016
The game played on February 7, 2016 was Super Bowl 50, a football game to determine the champion of the NFL.
The game played on February 7, 2016.
The game played on February 7, 2016 was an American football game to determine the champion of the NFL.

Add coreference edges between arguments.
Graph construction

Add coreference edges between arguments

Replace the big chunk with the sub predict-argument structure

The Super Bowl 50 was an American football game to determine the champion on February 7, 2016.

Super Bowl 50

played

The game

on February 7, 2016

determine

the champion of the NFL

An American football game
The game played on February 7, 2016 determined the champion of the NFL.

Add coreference edges between arguments.

Replace the big chunk with the sub predict-argument structure.
An American football game was played on February 7, 2016. The game played was the champion of the NFL. Super Bowl 50 was the game played on February 7, 2016. Super Bowl 50 determined the champion of the NFL.
Model: Find the best graph alignment
Model: Find the best graph alignment

Super Bowl 50

played

what day

Super Bowl 50

played

on February 7, 2016

The game

determine

An American football game

was

the champion of the NFL
An American football game was the champion of the NFL.
The game was played on February 7, 2016, in Super Bowl 50.
Model: Find the best graph alignment

- The alignment scores are computed by a BERT-based scoring function.

Super Bowl 50

played

23.5

what day

played

on February 7, 2016

24.2

Super Bowl 50

An American football game

determine

was

the champion of the NFL

The game
The alignment scores are computed by a BERT-based scoring function.
The alignment scores are computed by a BERT-based scoring function.

Decision is made by sum over all alignment scores:

$$23.5 + 24.5 + 28.7 > 23.5 + 19.3 + 24.2$$
Inference: Beam search w/constraints
Inference: Beam search w/constraints

- Incrementally build up alignments using beam search subject to constraints
Inference: Beam search w/constraints

- Incrementally build up alignments using beam search subject to constraints
- Constraints:
 - Locality: adjacent nodes in question should align to nearby nodes in context graph
Incrementally build up alignments using beam search subject to constraints

Constraints:
- Locality: adjacent nodes in question should align to nearby nodes in context graph

Super Bowl 50 was played 24.5 on February 7, 2016. The game was determine. An American football game.
Inference: Beam search w/constraints

- Incrementally build up alignments using beam search subject to constraints
- Constraints:
 - Locality: adjacent nodes in question should align to nearby nodes in context graph
Incrementally build up alignments using beam search subject to constraints

Constraints:
- Locality: adjacent nodes in question should align to nearby nodes in context graph
- Entity constraint (later in the talk): require hard entity match

The game on February 7, 2016 was determined. An American football game played in Super Bowl 50.

28.7 to 16.8
24.5 to 18.6
Incrementally build up alignments using beam search subject to constraints

- **Constraints:**
 - **Locality:** adjacent nodes in question should align to nearby nodes in context graph
 - **Entity constraint (later in the talk):** require hard entity match

The game played on February 7, 2016 was Super Bowl 50.

An American football game determine 28.7

played

Super Bowl 50

on February 7, 2016

Super Bowl 50

cannot align

Super Bowl 50

on February 7, 2016
Global Training: SSVM w/ beam search

- Global training:
 - Decision is made by sum over all alignment scores
Global Training: SSVM w/beam search

- Decision is made by sum over all alignment scores

\[
L = \max(0, \max_{a \in A} [f(a, Q, C) + \text{Ham}(a^*, a) - f(a^*, Q, C)])
\]

Loss of SSVM

\[
(29.3 + 29.2 + 23.5) + 2 - (23.5 + 24.5 + 28.7) = 7.2
\]
Outline

1) Question answering via sub-part alignment
 ▶ Graph construction
 ▶ Model: graph alignment between the question and the context
 ▶ Inference: beam search respecting constraints
 ▶ Training: SSVM using beam search

2) Experiments
 ▶ Adversarial robustness
 ▶ Constraints on alignment scores

3) Takeaways
Dataset
Dataset

Training:
- SQuAD-1.1 — Standard benchmark
Dataset

Training:
- SQuAD-1.1 — Standard benchmark

Testing:
- SQuAD-adversarial — append human approved strong distractors to the original context
 - Two datasets, SQuAD-addSent and SQuAD-addOneSent

Context: Super Bowl 50 was an American football game to determine the champion of NFL ... The game was played on February 7, 2016 ...

Adversarial Context: The Champ Bowl was played on the day of August 18, 1991
Adversarial robustness

Systems:

KAR: Explicit knowledge injection
BERT-ADV: Adversarial training on BERT
Adversarial robustness

Systems:

KAR: Explicit knowledge injection
BERT-ADV: Adversarial training on BERT

🔹 Our sub-part alignment system largely outperforms the BERT baseline and several systems in the literature.
Constraint on entities
Explicit alignments allow us to control the model’s behavior

- Reject unreliable predictions to trade coverage for performance — If the model could choose to answer k percentage of examples, how well does it do? (Selective QA setting, Kamath et al. 2020)
Explicit alignments allow us to control the model’s behavior
- Reject unreliable predictions to trade coverage for performance — If the model could choose to answer k percentage of examples, how well does it do? (Selective QA setting, Kamath et al. 2020)

Constraint on entity matches:
Force hard entity match
Explicit alignments allow us to control the model’s behavior
- Reject unreliable predictions to trade coverage for performance — If the model could choose to answer k percentage of examples, how well does it do? (Selective QA setting, Kamath et al. 2020)

Constraint on entity matches:
Force hard entity match

Throw out the examples without a hard entity match
Constraint on alignment scores
Constraint on alignment scores:

- Alignment scores we produced are good indicators of how well the alignments are
Constraint on alignment scores:

- Alignment scores we produced are good indicators of how well the alignments are

Question: Who created an engine using high pressure steam in 1801?

Adversarial alignment: Jeff Dean created an engine using low pressure steam in 1790.
Constraint on alignment scores:

- Alignment scores we produced are good indicators of how well the alignments are

Question: Who created an engine using high pressure steam in 1801?

Adversarial alignment: Jeff Dean created an engine using low pressure steam in 1790.

How to find the unreliable alignment:

- Worst Link Gap: max score over all alignments - min score over the prediction
- Larger Worst Link Gap indicates lower confidence in prediction
If our model can choose to answer only the k percentage of examples it’s most confident about (the coverage), what F1 does it achieve?

![Image of a graph showing the performance of two models, 'Our model' and 'BERT', under different coverage levels. The graph shows the F1 score decreasing as coverage increases, with a notable drop at high coverage for 'Our model'. There are two points labeled 'hard entity constraint' and 'w/o constraint' on the graph.]}
Constrained performance

- If our model can choose to answer only the k percentage of examples it’s most confident about (the coverage), what F1 does it achieve?

- For our model, the confidence is taken to be the Worst Link Gap; For BERT, the confidence is posterior probability.
If our model can choose to answer only the k percentage of examples it’s most confident about (the coverage), what F1 does it achieve?

For our model, the confidence is taken to be the Worst Link Gap; For BERT, the confidence is posterior probability.

The confidence scores of BERT QA do not align with its performance, while our alignment score is well calibrated.
Constrained performance

- If our model can choose to answer only the k percentage of examples it’s most confident about (the coverage), what F1 does it achieve?

- For our model, the confidence is taken to be the Worst Link Gap; For BERT, the confidence is posterior probability.

At the same coverage, alignment score constraint is better

The confidence scores of BERT QA do not align with its performance, while our alignment score is well calibrated
Outline

1) Question answering via sub-part alignment
 ▸ Graph construction
 ▸ Model: graph alignment between the question and the context
 ▸ Inference: beam search respecting constraints
 ▸ Training: SSVM using beam search

2) Experiments
 ▸ Adversarial robustness
 ▸ Constraints on alignment scores

3) Takeaways
Takeaways
The subpart-alignment is a viable way of verifying whether the whole question is supported by the context.

- It makes the QA process more explicit, thus more explainable and debuggable
- It allows us to place explicit constraints to gain more control of the model
Takeaways

- The subpart-alignment is a viable way of verifying whether the whole question is supported by the context.
 - It makes the QA process more explicit, thus more explainable and debuggable
 - It allows us to place explicit constraints to gain more control of the model

- Identifying the misalignment between the question and the context is hard
 - How to automatically identify and align the spans — SRL is inflexible and doesn’t cover everything
 - Noun phrase alignment is easy to learn while the predicate alignment is hard
 - Check our new preprint on using an entailment model to aid the alignment process
Thank you!